19 research outputs found

    Single-walled carbon nanotube device fabrication using spin coating of dispersions

    Get PDF
    This research looks at ways to utilize already synthesized carbon nanotubes (CNT) to manufacture electrical connections using current tools and fabrication methods employed in the semiconductor industry. Purchased single-walled carbon nanotubes (SWNT) are separated and placed in suspension using poly(sodium styrene sulfonate) (PSS). The PSS non-covalently bonds to the SWNTs, causing them to repel each other due to the negative charge of the PSS. The suspension of SWNTs is spin coated over a processed silicon (Si) wafer with fabricated trenches. A Si wafer with a top silicon dioxide (SiO 2) layer is spin coated with Shipley 1827 photoresist. UV light is used to expose areas to the photoresist, creating trench areas. After removal of the exposed areas of the photoresist, trenches are etched into the SiO 2 layer with a buffered oxide etch (BOE) solution of hydrofluoric acid. The suspension of SWNTs is spin coated over the processed Si wafer. The wafer is placed on a hot plate at 115° C to slowly evaporate the water from the SWNT suspension. As the water evaporates, the SWNTs remain on the surface of the Si wafer or gather in the trenches. Finally, the photoresist is removed, lifting off all of the SWNTs that are not in the trenches. Several trenches have a sufficient fill rate to allow IV characteristics to be performed. A Keithley probe station is used to measure the resistance of the SWNT composite material in the trench. These results, 47.3 kΩ, are similar to other fabricated SWNT/polyelectrolyte thin films, showing that the method presented can be used to simplify the process of fabricating SWNT composite wires. Raman spectroscopy is also used to determine if the SWNTs in the SWNT composite structure are aligned in any direction. There is no preferential orientation of the SWNTs in the structure, rather the SWNTs appeared to be randomly oriented in all directions

    AGRI 371: Agroecosystem Analysis

    No full text

    AGRI 371: Agroecosystem Analysis

    No full text

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe

    An emergent approach to analogical inference

    No full text

    [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock].

    No full text
    corecore